

Home Automation Model

Home is a computer with people living inside with:
粦Loads controlled by commands
**Buttons and Sensors generating events
粦Instructions executing commands based on events and time schedules

Buttons

\author{

* Keys
 * Switches
 * Rockers
 * Keypads
}

Loads

\author{

* Light \& Dimmers
 業 Shutters
 * Bells
 畨 Fans
 * Electro valves
}

Commands

* Light_11 = ON

Light_11 = OFF

* Shutter_12 = UP

Shutter_12 = DOWN
Shutter = STOP

* Fan = Clockwise

Fan = Counter_Clockwise
Fan = Stop

Sensors

\author{

* IR sensors
 * Light
 粦 Microswitch
 w Water
 * Gas
 * Temperature
}

Computer Instruction Similar to a Scenario

* NAME:

When_it_happens:
Only_if_it_happens:
Execute:
events
conditions
commands

My Home Scenarios Bticino MH2OO

* Enable Key
* Disable Key
* Trigger events

粦 Time events

* Conditions
* Execute

Bticino MH200 Scenarios Similar to Transition in FSM

* Scenario Enable Key: (optional) Scenario Disable Key: (optional)
* Transition: (present_state-next_state)

When_it_happens: event_1
Stop_if_it_happens: event_2
Only_If:
Execute:
present_state (condition)
commands (next_state)

One-Click Lamp Finite State Machine

粦 State_Transitions:
Input, Present_State /
Commands, Next_State

OFF_ON	ON_OFF
TRANSITION	TRANSITION

One-Click Light Scenarios MH200 Software

* Zero_ONE: When: Click=ON Only_if: L=OFF
Execute: L=ON
* ONE_ZERO: When: Click=ON Only_if: L=ON
Execute: L=OFF

Hidden Commands Using ON commands

粦 When a light is turned ON twice within 3 sec ．a scenario is activated．

粦 Otherwise the light operates normal．
粦 Scenarios can be panic＿call， $\mathrm{AMB}=\mathrm{ON}$ ， open＿house，water＿plants，raise＿shutters，．．．．

Hidden Commands Panic_Call Scenarios

* FLAG_OFF_ON: When: L1=ON Only_if: Flag_1=OFF Execute: Flag=ON, Delay=3 sec, Flag_1=OFF
* FLAG_ON_OFF: When L1=ON Only_if: Flag_1=ON
Execute: Panic_call= 0.5 sec Flag_1=OFF

Hidden Commands Using OFF commands

粦 When a light is turned OFF twice within 3 sec . a scenario is activated.

粦 Otherwise the light operates normal.

* Scenarios can be AMB=OFF, GEN=OFF close_house, lower_shutters,

Hidden Commands Using OFF commands

* FLAG_OFF_ON: When: L1=OFF Only_if: Flag_2=OFF Execute: Flag_2=ON, Delay=3 sec, Flag_2=OFF
* FLAG_ON_OFF: When: L1=OFF Only_if: Flag_2=ON
Execute: AMB_1=OFF,
Flag_2=OFF

Corridor Lighting Description

粦 A sensor turns ON the Corridor light is turned ON 15 sec ．Generally a person traverses the Corridor in less than 6 sec．

粦 The Corridor stays ON until the person leaves the Bathroom．
＊The Corridor light is blocked ON if the Bathroom light is turned ON when Hall light is ON．

粪 The Corridor light goes OFF 15 seconds after Bathroom light is turned OFF．

Corridor Lighting MH200 Scenarios

* OFF_ON: When: Aux_4=ON Only_if: Corridor=OFF
Execute: Corridor=ON, $\mathrm{D}=15 \mathrm{sec}$, Corridor=OFF
* ON_Block: When: Bathroom=ON Only_if: Corridor=ON
Execute: Corridor=BLOCK
* Block-OFF: When: Bathroom=OFF Only_if: Bathroom=ON
Execute: D=15 sec,

Corridor= UNBLOCK, Corridor=OFF

3-Way Lamp Finite State Machine

粦 State_Transition:
Inputs,Present State,
Commands, Next State

* 0 W

L1 $=25 \mathrm{~W}$
L2=50 W
$\mathrm{L} 1+\mathrm{L} 2=75 \mathrm{~W}$

OW

3-Way Lamp MH200 Scenarios

* ZERO_ONE: When click_1=ON Only_if: L2=OFF AND L1=OFF Execute: L1=ON
* ONE_TWO: When click_1=ON Only_if: L2=OFF AND L1=ON Execute: L2=ON, L1=OFF
* TWO_THREE: When click_1=ON Only_if: L2=ON AND L1=OFF Execute: L1=ON
* THREE_zero: When click_1=ON Only_if: L2=ON AND L1=ON
 Execute: L2=OFF, L1=OFF

3-Way Lamp (Back) MH200 Scenarios

* ZERO-Three: When click_2=ON Only_if L2=OFF AND L1=OFF Execute L2=ON, L1=ON
* Three-TWO: When click_2=ON Only_if L2=ON AND L1=ON Execute L2=ON, L1=OFF
* TWO-ONE: When click_2=ON Only_if L2=ON AND L1=0FF Execute L1=ON, L2=OFF
* one-ZERO: When click_2=ON Only_if L2=OFF AND L1=ON Execute L1=OFF, L2=OFF

0 W

Home Applications

* Security and Safety
* Comfort (Light, Automation, Video, Sound)
* Climate Control
* Energy Management

MH200 Programs Up to 300 Scenarios

* Indiana Jones' Traps - A command sequence test
* Simulated Presence - Fibonacci's shift register
* Energy Saving - Warns when there are 5 lights ON simultaneously out of seven lights.

Indiana Jones’ Traps A command sequence test

* A visitor must pass 3 tests in 20 seconds when entering the house.
* First test: Turn OFF only one of two ON lights.

粦 Second test: Repeat the First Test a second time.
** Third Test: After the same two lights are turned ON again, visitor must guess an additional third light to turn ON.
** If any test fails a Panic call will be set.

Indiana Jones' Trap First Test to Enter the Temple

* START-TEST_1: When AUX_9=0

Execute: $L 1=1, L 2=1$,

$$
\begin{aligned}
& C 2=0, C 1=1, \\
& D=20 \text { sec, PANIC=1 }
\end{aligned}
$$

* TEST_1-PANIC: When: L1=0

Only_if: \quad C2 $=0$ AND C1=1
Execute: Panic=1, L2=0, C1=0

* TEST_1-TEST_2: When L2=0 Only_if: \quad C2 $=0$ AND C1=1 Execute: L2=1, C2=1, C1=0

Indiana Jones' Trap Second Test to Enter the Temple

* TEST_2-PANIC: When: L2=0

Only_if: C2=1 AND C1=0 Execute: Panic=1, L1 $=0, \mathrm{C} 2=0$

* TEST_2-TEST_3: When L1=0 Only_if: C2=1 AND C1=0 Execute: L2=1, C1=1

Indiana Jones Trap Third Test to Enter the Temple

* TEST_3-PANIC: When: $\mathrm{L} 2=0, \mathrm{~L} 1=0$

Only_if: C2=1 AND C1=1
Execute: Panic=1
L1 $=0, \mathrm{~L} 2=0$
C2 $=0, \mathrm{C} 1=0$

* TEST_2-TEST_3: When: L3=1

Only_if: C2=1 AND C1=1
Execute: PANIC=BLOCK

$$
\begin{aligned}
& \mathrm{L} 1=0, \mathrm{~L} 2=0 \\
& \mathrm{C} 2=0, \mathrm{C} 1=0 \\
& \text { DELAY }=20 \text { sec. } \\
& \text { PANIC=UNBLOCK }
\end{aligned}
$$

Simulated Presence Program Fibonacci's Shift Register

* Turn lights ON/OFF pseudo-randomly in a house with four rooms and a center_hall (or stair).
* There are 15 different combinations.
* The combination of lights ON changes every time the center hall or stair lights are turned ON.
* The program stops when all lights are OFF.

粦 The program starts if any one of the four lights is turned ON.

Fibonacci's Shift Register 15 scenarios

* $1111,0111,0011,0001,1000,0100$, 0010,1001,1100,0110,1011,0101, 1010,1101,1110
* All scenarios with "repeat action" checked
* ONE: Only_if: $L 1=1$ \& $L 2=1 \& L 3=1 \& L 4=1$ Execute: random_delay, L1=0
* TW0: Only_if $L 1=0$ \& $L 2=1 \& L 3=1 \& L 4=1$ Execute: random_delay, L2=0
\qquad
* FIFTEEN: Only_if $L 1=1 \& L 2=1 \& L 3=1 \& L 4=0$ Execute: random_delay, $L 4=1$

Energy Saving Warning Signals when 5 out of 7 lights are ON.

* Set a limit to the number of lights you can have ON simultaneously.

業 When the limit is reached a warning light turns ON.
** Option - When the limit is reached all lights are turned OFF.

类 It can be solved in two ways: first) adding 3 switches to count 0 to 7 , and second) listing all states above the warning transition and listing all the states below the warning transition.

Energy Saving Warning
 One) with 3-bit counters

* There are seven states named zero to seven
* Initially all lights are OFF and counter is zero

粪 Every time a light goes ON there is a transitions to a higher state. 7 up-transitions.
** Every time a light goes OFF there is transition to a lower state. 7 down-transitions

粦 A warning light is turned on counter equal to five, six, and seven. $(101,110,111)$

Energy Saving Warning One) 3-bits counter C3,C2,C1
 \section*{ON (7)}

000
001
010

米 COUNT_ON_0_1: When: $L 1=1, L 2=1, L 3=1, L 4=1, L 5=1, L 6=1, L 7=1$
Only_if: C3=0 AND C2=0 AND C1=0
Execute: $\mathrm{C} 1=1$
COUNT_ON_4_5: When: $L 1=1, L 2=1, L 3=1, L 4=1, L 5=1, L 6=1, L 7=1$
Only_if: C3=1 AND C2=0 AND C1=0
Execute: C1=1, Warning=1
------------------------- (7 up_count transitions)
COUNT_OFF_5_4: When: $L 1=0, L 2=0, L 3=0, L 4=0, L 5=0, L 6=0, L 7=0$
Only_if: C3=1 AND C2=0 AND C1=1
Execute: $\mathrm{C} 1=0$, Warning=0
(7 down_count transitions)

Energy Saving Warning Two) all states near the warning transition

* 1 state with all 7 -lights $\mathrm{ON}(\mathrm{L} 1=\mathrm{L} 2=\mathrm{L} 3=\mathrm{L} 4=\mathrm{L} 5=\mathrm{L} 6=\mathrm{L} 7=\mathrm{ON}$) (warning)
* 7 states with 1 -light OFF ($0111111,1011111, \ldots .$.
* 21 states with 2-lights OFF ($0011111,0101111, \ldots$)
* 35 states with 3 -lights OFF $(0001111,0010111, \ldots .$.
(warning)
(warning)
(no warnings)
* Warning light goes ON when a light is turned ON in one of the 35 states
* Warning lights goes OFF when a light is turned OFF in one of the 21 States
* A total of 56 scenarios
* COMBINATIONS OF SEVEN $=1,7,21,35,21,7,1$

Energy Saving Warning Two) All states near the warning transition

米
(35 states with 4 lights ON)
LIGHT_ON_1111000: When: L5=1, L6=1, L3=1
Only_if: L1=1 AND L2=1 AND L3=1 AND L4=1 AND L5=0 AND L6=0 AND L7=0 Execute: Warning=1
*
(21 states with 2 lights OFF)
LIGHT_OFF_1111100: When: L1=0, L2=0, L3=0, L4=0, L5=0)
Only_if: L1=1 AND L2=1 AND L3=1 AND L4=1 AND L5=1 AND L6=0 AND L7=0 Execute: Warning=0

Energy Saving Warning Comparison of Two Methods

	Method One Using Hardware	Method Two Using Scenarios
Hardware	3 switches	0
Software	14 scenarios	56 scenarios
Scenarios with same Start Event	7 scenarios	5 scenarios

Summary MH200 Tutorial

* The MH2O0 can implement a Finite State Machine to execute simple computer programs with many states and instructions.

粦 State transitions are equivalent to scenarios.

* Adding hardware (switches) may lower the number of scenarios required.
* The MH200 can add-on to the home a behavior in many creative ways (Indiana Jones' Traps, Hidden Commands, Energy Saving, Safety, and Comfort).

Links

* http://gallery.me.com/andres.celina\#gallery
* e-mail: aalbanese@yahoo.com
* http://www.myopen-bticino.it/

